KEYS AND SCORES

For Questions in Final Exam of Physics 1 Edited by: Dao Vinh Ai and Tran Chien Thang

Question	Answer	Mark
1	(a) Increases. When the ice melts, it moves away from the axis of rotation and the distance increases. Moment of inertia of the Earth therefore increases ($I \sim r^2$).	0.5
	(b) Increase. The Earth is an isolated system, so its angular momentum is conserved when the distribution of its mass changes. When its moment of inertia increases, its angular speed decreases ($L = I\omega = const$), so its period increases. However, most of the mass of Earth would not move, so the effect would be small: we would not have more hours in a day, but more nanoseconds.	0.5
2	Centripetal acceleration is given by: $a_c = R\omega^2$.	0.5
	Note that $R = 29.0$ ft = 8.845 m, and $a_c = 20$ g = 196 m/s ² .	
	The angular speed is: $\omega = \sqrt{\frac{a_c}{R}}$.	0.5
	The rotation rate is given by: $f = \frac{1}{T} = \frac{\omega}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{a_c}{R}}$.	0.5
	Finally: $f = 0.750 \text{ rev/s}$.	0.5
	\overrightarrow{F} (a) The freebody diagram of the suitcase	0.75
	(b) Newton 2 nd law for the suitcase:	
	$\sum \vec{F} = \vec{F}_g + \vec{n} + \vec{f} + \vec{F} = 0$	0.25
3	$\overrightarrow{\mathbf{f}} \qquad \qquad (\text{the suitcase is moving at constant velocity, therefore its acceleration is zero})$	
	On the x-axis: $-f + F \cos \theta = 0$	
	$\overrightarrow{\mathbf{F}}g \qquad \Longrightarrow \cos\theta = \frac{f}{F} = 0.571$	0.5
	$\Rightarrow \theta = 55.2^{\circ} = 0.963 rad$	
	(c) On the y-axis: $-F_g + n + F \sin \theta = 0$	
	$\Rightarrow n = mg - F\sin\theta = 167 N$	0.5
	(a) Consider the system (car & Earth). This system is isolated (energy), and there is no non-	
4	conservative force acting in the system. Therefore, its mechanical energy is conserved.	0.25
	The initial configuration: at the top of the hill The final configuration: at the bottom of the hill Choose +y upward and $y = 0$ at the bottom of the hill	0.25
	One has:	
	$U_{g,i} = mgy_i = mgh (= 1.68 kJ); \qquad K_i = 0;$	
	$U_{g,f}=0; \qquad K_f=rac{1}{2}mv_f^2;$	0.5
	Conservation of mechanical energy: $\Delta E_{mech} = \Delta U_g + \Delta K = (U_{g,f} - U_{g,i}) + (K_f - K_i) = 0$	

	$\implies mgh = \frac{1}{2}mv_f^2$	0.25
	$\Rightarrow v_f = \sqrt{2gh} = 18.5 \text{ m/s}$	
	(b) During the collision, consider the system including only the car. This system is non-	
	isolated (momentum). The change in its momentum is due to the force exerted by the pile of	
	sand, and is equal to the impulse of this force during the collision:	
	$\Delta ec{p} = ec{I} = \int ec{F} dt = ec{F}_{avg} \Delta t.$	
	On the x-axis (horizontal, +x pointing to the left):	0.5
	$\Delta p_x = F_{x,avg} \Delta t$	
	$\Rightarrow F_{x,avg} = \frac{\Delta p_x}{\Delta t} = \frac{mv_f - mv_i}{\Delta t}$	
	Here, the initial configuration is right before the collision, $v_i = 18.5$ m/s.	
	The final configuration is right after the collision, $v_f = 0$. Time duration of the collision: $\Delta t = 4.00$ s.	
	Finally, $F_{x,avg} = -4.56 \times 10^3 \text{N}.$	0.5
	The magnitude of this average force is $ F_{x,avg} = +4.56 \times 10^3 \text{N}$.	
	P (a) Heat exchanged during each process:	
5	Q_h $Q_{AB} = 0$ (adiabatic compression);	0.25
	$Q_{CD} = 0$ (adiabatic expansion);	
	$Q_{BC} = nC_P(T_C - T_B) > 0$ (isobaric heating);	0.25
	$Q_{DA} = nC_V(T_A - T_D) < 0 \text{ (isovolumetric cooling)};$	0.25
	Q_c Thermal efficiency of the engine:	
	$ \begin{vmatrix} A & e = 1 - \frac{ Q_c }{ Q_h } = 1 - \frac{1}{ Q_{BC} } = 1 - \frac{1}{\gamma} \frac{T_D - T_A}{T_C - T_B} = 0.604 = 60.4\%. $	0.75
	(b) Thermal efficiency of a Carnot engine operating between the highest (T_C) and the	
	lowest temperatures in this cycle (T_A) :	0.75
	$e_C = 1 - \frac{T_C}{T_h} = 1 - \frac{T_A}{T_C} = 0.831 = 83.1\%.$	0.75
	(c) The compression ratio can be found by considering the adiabatic process A→B. One has:	
	$T_A V_A^{\gamma - 1} = T_B V_B^{\gamma - 1} \Longrightarrow r_C = \frac{V_A}{V_B} = \left(\frac{T_B}{T_A}\right)^{\frac{1}{\gamma - 1}} = 15.0.$	0.75