KEYS AND SCORES

For Questions in Final Exam of Physics 1

Edited by: Dao Vinh Ai and Tran Chien Thang

\begin{tabular}{|c|c|c|}
\hline Question \& Answer \& Mark \\
\hline 1 \& \begin{tabular}{l}
(a) Increases. When the ice melts, it moves away from the axis of rotation and the distance increases. Moment of inertia of the Earth therefore increases (\(\mathrm{I} \sim \mathrm{r}^{2}\)). \\
(b) Increase. The Earth is an isolated system, so its angular momentum is conserved when the distribution of its mass changes. When its moment of inertia increases, its angular speed decreases (\(\mathrm{L}=\mathrm{I} \omega=\) const), so its period increases. However, most of the mass of Earth would not move, so the effect would be small: we would not have more hours in a day, but more nanoseconds.
\end{tabular} \& 0.5

0.5

\hline 2 \& | Centripetal acceleration is given by: $a_{c}=R \omega^{2}$. |
| :--- |
| Note that $R=29.0 \mathrm{ft}=8.845 \mathrm{~m}$, and $a_{c}=20 \mathrm{~g}=196 \mathrm{~m} / \mathrm{s}^{2}$. |
| The angular speed is: $\omega=\sqrt{\frac{a_{c}}{R}}$. |
| The rotation rate is given by: $f=\frac{1}{T}=\frac{\omega}{2 \pi}=\frac{1}{2 \pi} \sqrt{\frac{a_{c}}{R}}$. |
| Finally: $\mathrm{f}=0.750 \mathrm{rev} / \mathrm{s}$. | \& \[

$$
\begin{aligned}
& 0.5 \\
& 0.5 \\
& 0.5 \\
& 0.5
\end{aligned}
$$
\]

\hline 3 \& | |
| :--- |
| (a) The freebody diagram of the suitcase |
| (b) Newton $2^{\text {nd }}$ law for the suitcase: $\sum \vec{F}=\vec{F}_{g}+\vec{n}+\vec{f}+\vec{F}=0$ |
| (the suitcase is moving at constant velocity, therefore its acceleration is zero) |
| On the x -axis: $-f+F \cos \theta=0$ $\begin{gathered} \Rightarrow \cos \theta=\frac{f}{F}=0.571 \\ \Rightarrow \theta=55.2^{\circ}=0.963 \mathrm{rad} \end{gathered}$ |
| (c) On the y-axis: $-F_{g}+n+F \sin \theta=0$ $\Rightarrow n=m g-F \sin \theta=167 N$ | \& | 0.75 |
| :--- |
| 0.25 |
| 0.5 |
| 0.5 |

\hline 4 \& | (a) Consider the system (car \& Earth). This system is isolated (energy), and there is no nonconservative force acting in the system. Therefore, its mechanical energy is conserved. |
| :--- |
| The initial configuration: at the top of the hill |
| The final configuration: at the bottom of the hill |
| Choose $+y$ upward and $y=0$ at the bottom of the hill |
| One has: $\begin{gathered} U_{g, i}=m g y_{i}=m g h(=1.68 \mathrm{~kJ}) ; \quad K_{i}=0 ; \\ U_{g, f}=0 ; \quad K_{f}=\frac{1}{2} m v_{f}^{2} ; \end{gathered}$ |
| Conservation of mechanical energy: $\Delta E_{\text {mech }}=\Delta U_{g}+\Delta K=\left(U_{g, f}-U_{g, i}\right)+\left(K_{f}-K_{i}\right)=0$ | \& 0.25

0.5

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{gathered}
\Rightarrow m g h=\frac{1}{2} m v_{f}^{2} \\
\Rightarrow v_{f}=\sqrt{2 g h}=18.5 \mathrm{~m} / \mathrm{s}
\end{gathered}
\] \\
(b) During the collision, consider the system including only the car. This system is nonisolated (momentum). The change in its momentum is due to the force exerted by the pile of sand, and is equal to the impulse of this force during the collision:
\[
\Delta \vec{p}=\vec{I}=\int \vec{F} d t=\vec{F}_{a v g} \Delta t
\] \\
On the x -axis (horizontal, +x pointing to the left):
\[
\begin{gathered}
\Delta p_{x}=F_{x, a v g} \Delta t \\
\Rightarrow F_{x, a v g}=\frac{\Delta p_{x}}{\Delta t}=\frac{m v_{f}-m v_{i}}{\Delta t}
\end{gathered}
\] \\
Here, the initial configuration is right before the collision, \(v_{i}=18.5 \mathrm{~m} / \mathrm{s}\). \\
The final configuration is right after the collision, \(v_{f}=0\). \\
Time duration of the collision: \(\Delta t=4.00 \mathrm{~s}\). \\
Finally, \(F_{x, a v g}=-4.56 \times 10^{3} \mathrm{~N}\). \\
The magnitude of this average force is \(\left|F_{x, a v g}\right|=+4.56 \times 10^{3} \mathrm{~N}\).
\end{tabular} \& 0.25 \\
\hline 5 \& \begin{tabular}{l}
 \\
(a) Heat exchanged during each process: \\
\(Q_{A B}=0\) (adiabatic compression); \\
\(Q_{C D}=0\) (adiabatic expansion); \\
\(Q_{B C}=n C_{P}\left(T_{C}-T_{B}\right)>0\) (isobaric heating) \(;\) \\
\(Q_{D A}=n C_{V}\left(T_{A}-T_{D}\right)<0\) (isovolumetric cooling); \\
Thermal efficiency of the engine:
\[
\begin{aligned}
\& e=1-\frac{\left|Q_{c}\right|}{\left|Q_{h}\right|}=1-\frac{\left|Q_{D A}\right|}{\left|Q_{B C}\right|}=1-\frac{1}{\gamma} \frac{T_{D}-T_{A}}{T_{C}-T_{B}}= \\
\& 0.604=60.4 \% .
\end{aligned}
\] \\
(b) Thermal efficiency of a Carnot engine operating between the highest (\(T_{C}\)) and the lowest temperatures in this cycle \(\left(T_{A}\right)\) :
\[
e_{C}=1-\frac{T_{C}}{T_{h}}=1-\frac{T_{A}}{T_{C}}=0.831=83.1 \%
\] \\
(c) The compression ratio can be found by considering the adiabatic process \(\mathrm{A} \rightarrow \mathrm{B}\). One has:
\[
T_{A} V_{A}^{\gamma-1}=T_{B} V_{B}^{\gamma-1} \Rightarrow r_{C}=\frac{V_{A}}{V_{B}}=\left(\frac{T_{B}}{T_{A}}\right)^{\frac{1}{\gamma-1}}=15.0
\]
\end{tabular} \& 0.25
0.25
0.25

0.75

0.75
0.75

\hline
\end{tabular}

